

 Swinburne University of Technology | CRICOS Provider 00111D | swinburne.edu.au

Swinburne Research Bank
http://researchbank.swinburne.edu.au

Cai, Y., Grundy, J., & Hosking, J. (2007). Synthesizing client load models for

performance engineering via web crawling.

Originally published in Proceedings of 22nd IEEE/ACM International Conference
on Automated Software Engineering (ASE'07), Atlanta, United States, 05–09

November 2007 (pp. 353–362). New York: ACM.

 Available from: http://doi.acm.org/10.1145/1321631.1321684

Copyright © ACM, 2007. The definitive version was published in Proceedings of ASE
(2007).

This is the author’s version of the work, posted here with the permission of the
publisher for your personal use. No further distribution is permitted. You may also be
able to access the published version from your library. The definitive version is
available at http://dl.acm.org/.

http://doi.acm.org/10.1145/1321631.1321684
http://dl.acm.org/

Synthesizing Client Load Models for Performance
Engineering via Web Crawling

Yuhong Cai
Dept of Computer Science

University of Auckland
Private Bag 92019, Auckland 1142

New Zealand
+64 9 3737599

ycai003@ cs.auckland.ac.nz

John Grundy
Depts of Computer Science and

Electrical and Computer Engineering
University of Auckland 1142
Private Bag 92019, Auckland
New Zealand +64 9 3737599

john-g@cs.auckland.ac.nz

John Hosking
Dept of Computer Science

University of Auckland
Private Bag 92019, Auckland 1142

New Zealand
+64 9 3737599

john@cs.auckland.ac.nz

ABSTRACT
Accurate web application performance testing relies on the use of
loading tests based on a realistic client behaviour load model.
Unfortunately developing such load models and associated test
plans and scripts is tedious and error-prone with most existing
web performance testing tools providing limited client load
modelling capabilities. We describe a new approach and toolset
that we have developed, MaramaMTE+, which improves the
ability to model realistic web client load behaviour, automatically
generates complex web application testing plans and scripts, and
integrates load behaviour modelling with a generic performance
engineering tool. MaramaMTE+ uses a stochastic form chart as
its client loading model. A 3rd party web crawler application
extracts structural information from a target web site, aggregating
the collected data into a crawler database that is then used for
form chart model generation. The performance engineer then
augments this synthesized form chart with client loading
probabilities. Realistic web loading tests for a 3rd party web load
testing tool are then automatically generated from this resultant
stochastic form chart client load model. We describe the
development of our MaramaMTE+ environment, example usage
of the tool, and compare and contrast the results obtained from
our generated performance load tests against hand-built 3rd party
tool load tests.

Categories and Subject Descriptors
D.2.8 [Metrics]: Performance measures; D.2.2 [Design Tools
and Techniques] Computer-aided software engineering (CASE).

General Terms
Measurement, Performance, Model generation, Code generation,
Web Load Testing, Web User Behavior.

Keywords
Form Chart, Web Load Testing, Web User Behavior Modeling

1. INTRODUCTION
Web application load testing is an important part of web
performance engineering. Load testing measures the response
time, throughput, and availability of a target website from a
client’s perspective (usually a web browser). Load testing needs
to be undertaken rigorously before a robust cost-effective website
can be achieved [19]. A wide range of load testing tools [1] [4][8]
[17][19][22] and more generic performance and reliability
engineering tools [6][20][21] have been developed and are widely
used for web application testing. Modelling client user behaviour
and constructing load testing plans are core functionality of these
tools. However, almost all such tools provide only a fairly basic
model of client behaviour: a sequence of requests on the web
server arranged into repeating groups, multiple threads (to mimic
large numbers of client browsers), and some limited conditional
behaviour depending on the web server response. Some tools
support parameterisation of loading tests to allow configuration of
different test cases and test data, but usually is limited to different
example data set to the web application. Simulation-based
performance engineering utilises formal load models e.g. queuing
theory based [15] but these approaches do not run tests against
real web applications, only limited models of them. Limited
formal client loading models for web applications have been
developed to date and only very limited support exists for using
these behaviour models to generate web loading tests [7][8][22].
Building such client load models by hand is error-prone and time-
consuming, especially for large web sites and evolving web sites.
In earlier work we developed MaramaMTE, an integrated
performance engineering environment that supported the
representation of client load models based on Draheim & Weber’s
Stochastic Form Charts [8]. A Form Chart model shows the
structure of the target website and can be augmented with
probabilities to capture client behavioural interaction with web
forms. MaramaMTE supported simple test case generation from
these form chart loading models and engineers could construct
multiple testing plans by changing the values of model
parameters. In MaramaMTE engineers must construct form chart
loading models by hand and modify them incrementally to reflect
changing web site structure and user behaviour. Only a simple
Java client load test application was generated to run the tests,
providing very limited stress testing and analysis capabilities.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ASE’07, November 5-9, 2007, Atlanta, Georgia, USA.
Copyright 2007 ACM 1-58113-000-0/00/0004…$5.00.

(a)
(b)

Figure 1. (a) High-level view of Java PetStore software architecture; and (b) sample Stochastic Form Chart loading model.

MaramaMTE+ extends MaramaMTE to automate the tedious and
error-prone process of client load model structuring and testing
plan and script generation. MaramaMTE+ uses a web crawler to
extract structural information from a target web site, aggregating
collected data for use in form chart model generation. After
manual probability augmentation to produce an enriched
stochastic form chart model, this model is then used to
automatically generate a testing plan for a specific third party
testing tool e.g. Apache JMeter. Testers can both design testing
plans in the model from scratch, when empirical user behaviour
data is unavailable, and also use the model to analyze collected
empirical user behavior data and construct more realistic testing
plans. MaramaMTE+ integrates form chart modeling with
architecture design models, making it a generic software
architecture performance engineering tool.
We first present a motivation for our work, the analysis of the
Java PetStore J2EE reference application including required
support in MaramaMTE+ and related research to date. We then
overview the MaramaMTE approach to web application
performance engineering and illustrate an example usage of the
toolset applied to the Java PetStore web application. We describe
the design and implementation of our MaramaMTE+ toolset and
then compare and contrast the results of using MaramaMTE+ to
performance test the PetStore vs. using hand-built load testing
models in Apache JMeter and Microsoft Web Application Stress
tool. We conclude by summarising the main contributions of our
research and key areas for future research.

2. MOTIVATION AND RELATED WORK
We developed the MaramaMTE performance engineering tool to
allow us to explore new ways to model software architectures
and client load models for performance engineering complex
systems. MaramaMTE [11] is a generic software architecture
design and performance engineering tool. It supports a client-
server (with tiered-server-side) architectural style. Users can
model software architecture, generate a test bed (fully functional
client-server application with embedded performance evaluation
parameters), execute the test bed, and collect performance test
results. MaramaMTE and its predecessors [4] demonstrate the
merit of allowing software engineers to efficiently optimize
candidate architecture design via early-design phase performance

engineering before system implementation.
Our motivation for the work described here was a strong desire
for MaramaMTE to provide support during reengineering of
existing software systems, particularly of existing web
applications. Here there is a need to compare an existing software
system’s architecture and performance with that of new
candidate designs.To achieve this, we needed to solve a series of
problems, particularly around the methods needed to recover
legacy system architectural components into a MaramaMTE
architecture model and to compare the performance of legacy
system components with that of the proposed new design. A rich,
realistic client behavior model is required in MaramaMTE before
reliable performance comparisons can be made.
However, like most other generic performance evaluation tools,
MaramaMTE provides good capabilities for modeling server-side
parts of an application but relatively weak support for modelling
realistic client behaviours. Figure 1 (a) is a simplified
MaramaMTE architecture model of the standard java PetStore
application [14]. This architecture design, at a high level of
abstraction, shows the main components of the PetStore system,
including client-side components and the main server-side
components (including remote objects “SignOn”, “MainServlet”,
and “RequestProcessor”, etc; application server
“PetStoreAppServer”, etc). An engineer uses MaramaMTE to
vastly enrich this simplified server side model by providing
operations for each functional component and to set up a wide
variety of component properties used to generate performance
loading information. However, the client side model (the “user”
component in Figure 1 (a)) contains little more than a sequence
of remote server component requests (not shown). This is quite
insufficient for modelling realistic web user behaviour [11].
A form chart model is a technology-independent bipartite state
diagram used to simulate user behaviour [7][8]. The model
describes at a high level what the user sees as system output, and
what he or she provides as input to the system. Form chart
models consist of pages, actions, and transitions. Pages represent
possible states of a website; actions represent website server side
components, their behavior, and their response to requests;
transitions represent association between pages and actions. Form
charts have limited intention, and their semantics are also limited.

MaramaMTE supports a semantically-improved version of form
chart model, the stochastic form chart model, to provide a formal
model of realistic user behavior. In order to simulate realistic
users, the basic model is extended with stochastic functions to
describe navigation, time delays and user input [8]. Figure 1 (b)
shows a sample MaramaMTE page flow model diagram
representing user behavioural interaction with part of the
PetStore. This shows a starting state (top left rectangle:
“ClientA”), various web pages (ovals: “index”, “cart”, signin”,
“productdetails”, etc), and various actions allowing movement
between web forms (rectangles: “hr-signin”, “hr-cart”, etc). The
engineer captures probabilities of moving from a given web form
via actions e.g. from “index” to “signin” 0.3; from “index” to
“help” 0.2. For each web page, various properties of the page are
captured, such as the URL. Integrating such page flow models
with MaramaMTE provides an effective and realistic user
behavior model to augment the simple MaramaMTE
performance model [11].
The construction of a user behavior model i.e. the MaramaMTE
form chart model is done manually which is both error-prone and
time consuming, especially when large websites are being re-
engineered. In addition, generation of only a simple Java
application from this model to load test the web application is
insufficient. To reduce the bottleneck around user behavior
model specification and improve load test generation we
developed the following requirements for an improved tool:

• an analysis model is needed to relate actual web site
structure (from a user perspective) to possible form-level
interactions (via e.g. a form chart) to capture a realistic
model of web application usage for test generation

• the structure of the analysis model needs to be automatically
generated from the target web site instead of manually built

• tool support must allow users to easily change client load
model testing parameter values then generate multiple
testing plans and scripts automatically

• a 3rd party load testing tool should be used leveraging its
capabilities for large web application stress testing but
generating its limited client loading models from the more
abstract stochastic form chart load model

• the tool should be well-integrated within a generic
performance engineering environment allowing the realistic
client behavior model to influence the design of other parts
of software system e.g. the software architecture

A wide range of performance engineering tools have been
developed for both web applications and other more general
software applications [19]. Some use simulation-based modelling
to provide approximations of application performance [15]. This
is useful for applications with extremely large clients and
difficult-to-obtain hardware resources e.g. supercomputers where
empirical testing is very difficult. Unfortunately the performance
estimations obtained may be very different to that obtained by
running on actual hardware and networks.
A number of practical load testing tools have been developed for
stress-testing web and other software applications. One example
is Apache JMeter [1] which offers both a textual and a GUI
environment for users to construct testing plans and scripts.
Unlike many such tools JMeter testing plans can be reasonably
complex and can simulate and analyze a variety of load scenarios

to obtain a quantitative insight into a web site’s loading
characteristics. However, JMeter does not support formal
behavior analysis modeling so users must construct their testing
plans based on ad-hoc testing goals. Microsoft’s Web
Application Stress Tool (WAS) [17] is a simple load and stress
testing tool that can be closely integrated with Visual Studio or
other development environments. It does not support as complex
a testing plan as JMeter. It supports simple load modeling
capability via a test setting wizard resulting in a testing plan with
limited flexibility. Most other commonly-used web testing tools
provide similarly limited client load model specification. For
example, Selenium [13] replays pre-recorded tests; while the
combination of e.g. FitNesse and Selenium can replay pre-
packaged black-box tests. Tool users need to construct
interactions to mimic user behavior based on ad-hoc analysis of
the web application and this is normally informal, non tuneable
and problematic for automated information exchange [8].
Several experimental web application testing tools have been
developed that try to encapsulate load models in various ways
[2][6][9][20]. These require users to construct models of the
system under test, usually UML or similar architectural models
or black-box services e.g. URLs, and generate loading tests from
them. Many, including our own ArgoUML[4], focus on server-
side modelling with limited client load modelling support. Some,
like Surge, scale up to large web site analysis [2]. Others provide
proof-of-concept approaches to modelling client and server
properties for synthesising loading models [6][20][22]. Some
web analysis tools try to obtain realistic testing plans by
recording user behavior then replaying or analysing it [21]. The
recorded user behavior may be close to reality, but the raw
behavior data needs to be abstracted to a suitable client loading
model for the purpose of user behavior analysis and data
exchange. No existing web application testing tool provides the
functionality demanded by our requirements.

3. OUR APPROACH
Figure 2 shows how MaramaMTE+ supports automatic
extraction of a user client load behavioural model and generation
of load testing plans and scripts via a web crawler and a
stochastic form chart model. Initially the target web site is
crawled (1) by a 3rd party web crawler we have adapted for the
purpose. The web crawler generates http request data from the
target website (2), and this web structural data is stored in a
database of possible requests to the target web site (3). The
extracted http requests are used to synthesize an initial form chart
model which is then imported into MaramaMTE+ (4) and a
default layout applied to generate one or more form chart
diagrams. This initial form chart model is then manually
augmented by the performance engineer using the MaramaMTE+
form chart diagramming tools to specify probabilities and other
stochastic parameters. The model may be versioned to allow
variations of the parameters and user behaviour to be modelled
for comparison (5). Load testing plans are then generated for
third party web application stress-testing tools (e.g. Apache
JMeter or Microsoft Web Stress Tool) (6). In addition,
MaramaMTE+ can generate server-side applications from its
architectural modelling views to allow load testing of proposed
web applications as well as the existing application from which
the form chart was synthesized. Stress-tests are run against the

target web application and results are collected by the stress-
testing tool (7). These test results are shown either inside
MaramaMTE+ or via a third party visualization tool (8) and may
be stored for future reference and comparison (9).

Running web
application e.g.
Java PetStore

1. Crawl web
site (using

WebSphinx)

2. Generate structural
information of web site

3. Web site
structure 4. Synthesize form

chart & import into
MaramaMTE+

Basic form chart
model skeleton

Stochastic form
chart (& versions)

MaramaMTE+
architecture view(s)

Other MaramaMTE+
views…

6. Generate scripts

-JMeter scripts
-Custom data
-MTE performance
test-bed

JMeter load
testing tool

7. Run tests via e.g.
JMeter

8. Visualise results in
JMeter or MTE+

5. Augment
form chart with

probabilities
etc

Performance
engineer

9. Stored
results

MaramaMTE+
(Eclipse-based

IDE)

Figure 2. Crawling web sites to extract form charts and
generating stress-tests with MaramaMTE+

Web Crawlers have long been used to explore the structure of
web sites from a user’s perspective. We use WebSphinx [18] to
extract the main screens, screen content, hyper links, and http
requests plus parameters and values from a web application. The
extracted information is collected into a crawler result database
which makes the web site structural data available for further use.
The MaramaMTE+ model and view generator then retrieves this
web site structural data from the database and generates a basic
form chart model, an instance of one of the MaramaMTE+ view
types. The generated form chart needs to be enhanced and
validated manually by adding additional data, such as action flow
transition probabilities and MaramaMTE-specific code
generation data (parameters and values). The enriched page flow
model is a stochastic form chart designed to contain sufficient
information to generate specific load testing plans for the web
site, including a JMeter testing plan, Microsoft Web Stress Test
or a MaramaMTE+ thick client testing plan (a Java client-side
application). Most parts of the toolset execute as components
inside MaramaMTE+, itself a set of plug-ins to the Eclipse IDE.
MaramaMTE+ provides the superstructure to start up the web
crawler, extract target web site structural data, manage the
crawler database, generate the initial form chart model, support
the modification of the model, generate testing script/plans and
test beds, initiate third party tools (e.g. JMeter) or
MaramaMTE+-specific test beds and show evaluation results.

4. EXAMPLE USAGE
We use the Java Pet Store reference application [14] as an
example to illustrate our approach. This is a de facto benchmark
application for performance evaluation technologies. Its
architecture has been well documented, with the main functional

modules represented in Figure 1 (a). From an end user (shopper)
perspective, basic interactions with the web site include: users
sign on; they browse the catalog; they buy pet(s) by putting them
into a shopping cart; they check out; and receive purchase
confirmation. It is obvious that the distribution of the types of
user-website interactions is not linear. For example, “browse
catalog” will be the most frequent interaction as, just as in a real
shop, there will always be more browsers than buyers. The “buy
pet” interaction is likely to be more frequent than “check out”
because a buyer may buy more than one pet before checking out.
Our stochastic form chart model(s) for the PetStore application
must capture these nuances. In addition, we may want multiple
models for different kinds of users e.g. business vs. personal
shoppers or situations, eg Christmas vs February, providing even
more fine-grained client load modelling for the web application.

4.1 HTTP Request Extraction
MaramaMTE+ uses WebSphinx to extract the pet store structural
information into an http requests database. As shown in Figure 3
(a), users run WebSphinx as a java application invoked from
MaramaMTE+ running as a set of plug-ins in an Eclipse
workbench. The user supplies the target web site information to
the crawler (Figure 3 (b)). The crawler explores the main screens,
hyper links among screens, and http requests, parameters and
values for the target web site. MaramaMTE+ collects data into a
purpose-built crawler/result/ http request database. The crawler
database contains 7 tables to offer easy data access when the
database is needed to generate form chart model. In Figure 3 (c)
shows the “http_request” table that holds http requests and
associated pages, and Figure 3 (d) shows the “page” table that
holds information about page ids and names.

4.2 Form Chart Extraction
MaramaMTE+ retrieves data from the database and uses it to
generate an initial form chart model. Figure 4 shows the main
processes of form chart generation. Tool users start the process
by opening a wizard “import pages”, as shown in Figure 4 (a).
Tool users choose the database for the target website they are
interested in and import available pages. Tool users choose the
pages they require, go to a form chart model, push an “AddTo
Diagram” button, and corresponding form chart Page elements
are added to the diagram/model. The wizard then allows tool
users to add “Action” components to the model (Figure 4 (b)).
Tool users are given a list of available actions (based on the
previously chosen pages), and similarly add “Action”
components to the form chart model. The wizard then allows tool
users to add transitions between “Page” and “Action”
components. The generated form chart model (Figure 4 (c)) is a
perfectly correct form chart model but is far from ideal
aesthetically and requires rearranging by the performance
engineer to improve its readability (Figure 4 (d)). Each oval
component represents a web page users may request, and each
rectangle component models actions directed at the server
application. For large web sites, MaramaMTE allows engineers
to view and edit partial form charts in multiple diagrams that
share a single model. MaramaMTE’s diagram and model
versioning mechanism [16] allows performance engineers to
create alternate versions of the form charts for a given web
application and compare, difference and merge them as required.

4.3 Form Chart Augmentation
MaramaMTE+ uses the generated form chart in two ways: 1)
using it as an independent model to generate testing plans and
scripts for third party load testing tools (e.g. Apache JMeter); or
2) using it together with other MaramaMTE+ models (e.g. the
architecture design models, business process models and service
composition models) to generate a performance evaluation test

bed [11]. For either of these purposes a generated form chart
model normally needs to be augmented by appropriate properties
that contain essential code generation information. For example,
MaramaMTE+ stochastic form chart transitions use a property
“Probability” to model the chance of users requesting a web
page. This property may be computed in various ways e.g.
randomly within a specified range, fixed

(a)

(b)

(c)

(d)

Figure 3. MaramaMTE+ using WebSphinx to extract structural information from PetStore web application.

(a)

(b)

(c)

(d)

(e)

Figure 4. MaramaMTE+ automatically generating a form chart model from the web crawler http request database.

 <jmeterTestPlan version="1.2" properties="1.8">
 <hashTree>
 <TestPlan guiclass="TestPlanGui" testclass="TestPlan" testname="Test Plan" enabled="true">
 <stringProp name="TestPlan.user_define_classpath"></stringProp>
 <stringProp name="TestPlan.comments"></stringProp>
 <boolProp name="TestPlan.functional_mode">false</boolProp>
 <boolProp name="TestPlan.serialize_threadgroups">false</boolProp>
 <elementProp name="TestPlan.user_defined_variables" elementType="Arguments"
 guiclass="ArgumentsPanel" testclass="Arguments" testname="User Defined Variables" enabled="true">
 <collectionProp name="Arguments.arguments">
 <elementProp name="server" elementType="Argument">
 <stringProp name="Argument.value">localhost</stringProp>
 <stringProp name="Argument.name">server</stringProp>
 <stringProp name="Argument.metadata">=</stringProp>
 </elementProp>
 <elementProp name="port" elementType="Argument">
 <stringProp name="Argument.value">8000</stringProp>
 <stringProp name="Argument.name">port</stringProp>
 <stringProp name="Argument.metadata">=</stringProp>
 </elementProp>
 <elementProp name="next_page" elementType="Argument">
 <stringProp name="Argument.value">page_index</stringProp>
 <stringProp name="Argument.name">next_page</stringProp>
 <stringProp name="Argument.metadata">=</stringProp>
 </elementProp>
 </collectionProp>
 </elementProp>
 </TestPlan>
 <hashTree>
 <ThreadGroup guiclass="ThreadGroupGui" testclass="ThreadGroup" testname="page flow" enabled="true">
 <stringProp name="ThreadGroup.ramp_time">1</stringProp>
 <boolProp name="ThreadGroup.scheduler">false</boolProp>
 <stringProp name="ThreadGroup.on_sample_error">continue</stringProp>
 <longProp name="ThreadGroup.start_time">1076438592000</longProp>
 <elementProp name="ThreadGroup.main_controller" elementType="LoopController"
 guiclass="LoopControlPanel" testclass="LoopController" testname="Loop Controller" enabled="true">
 <boolProp name="LoopController.continue_forever">false</boolProp>
 <stringProp name="LoopController.loops">1</stringProp>
 </elementProp>
 <stringProp name="ThreadGroup.num_threads">5</stringProp>
 <stringProp name="ThreadGroup.duration"></stringProp>
 <stringProp name="ThreadGroup.delay"></stringProp>
 <longProp name="ThreadGroup.end_time">1076438592000</longProp>
 </ThreadGroup>
 <hashTree>
…

(a)

(b)

(c)

Figure 5. JMeter test plan, JMeter, and test bed client application

value, normal curve distribution or from monitored web site
usage [8]. Form chart pages require properties to specify such
stochastic information including “delayKind”, “delayMax”,
“delayMin”, and “delayStdDev”. The performance engineer thus
needs to flesh out the initially generated form chart model with
suitable probabilities on all transition links. A generated model
may also be augmented by adding MaramaMTE+-specific
modeling components. For example, the “ClientA” component in
Figure 4 (e) does not belong to a generic form chart model. It
represents a client-side start-up component for use in loading test
code generation, because all testing plans need an entry point and
various configuration properties. Figure 4 (e) shows the
augmented stochastic form chart for the PetStore application in
MaramaMTE.

4.4 Loading Test Generation
A stochastic form chart model can generate a range of target load
testing plans and associated scripts or programs to implement the
testing plan. Here we describe the generation of an Apache
JMeter testing plan and associated scripts. A JMeter test plan
consists of one or more thread Groups, logic controllers, sample
generating controllers, listeners, timers, assertions, and
configuration elements [1].
When generating a JMeter test plan, each MaramaMTE+ form
chart “Page” component represents the state of the website, each
“Action” component represents the JMeter http requests to obtain
certain web pages, and each “Transition” link models transitions
between web pages via “Actions”. Element properties such as
“Probability” and “URL” are used to generate the logic
controllers of the JMeter testing plan. MaramaMTE+ uses the
Eclipse JET template-based code generator to translate a form
chart model into a JMeter testing plan, as illustrated in Figure 5
(a). In the generated JMeter test plan the form chart page
components and properties have been translated into http requests
on the target web application server. The actions and transitions
have been translated into control logic, essentially implementing
a state machine. The client component has been translated into

the root JMeter test plan configuration and properties. This
generated test plan can be loaded into the JMeter test tool’s GUI
environment, as shown in Figure 5 (b). A JMeter plan does not
need to be loaded into JMeter’s GUI interface but can instead be
executed directly through a command line in an automatic tool
suite environment or directly by MaramaMTE+. MaramaMTE+
can also generate a test-bed-specific client side Java application
using the PetStore form chart model, as illustrated in Figure 5 (c).

Figure 6. (top) sample load testing evaluation result and
report in JMeter; (bottom) sample performance evaluation

result of MaramaMTE+ testbed

4.5 Running Generated Load Tests
To complete our case study, we have undertaken initial load testing
using generated test plans both with JMeter and MaramaMTE+.
We ran our generated JMeter testing plan against the real running
Java PetStore application. The evaluation results are displayed
using JMeter’s summary reporting component, as shown in Figure
6 (a). This summary is generated as JMeter runs the http requests

against the PetStore server and reports visited web pages, sample numbers, average response time, min and max
response time, throughput, etc. The MaramaMTE+ generated test
plans can be configured to allow small numbers of requests to be
sent to the PetStore application server or very large numbers of
concurrent requests. JMeter supports both multi-threaded test
execution and distributed test execution using multiple hosts.
MaramaMTE+ allows the performance engineer to specify these
properties for the generated JMeter test plan, supporting large-scale
stress-testing. Multiple test runs are stored by JMeter and results
from multiple test runs can be displayed simultaneously to compare
performance of the target web application. Figure 6 (b) shows
example results (in Excel) from our generated MaramaMTE+
client-side Java application running against a generated server-side
test-bed. This supports exploratory performance engineering for
web applications in early-phase design or reengineering.

5. DESIGN AND IMPLEMENTATION
MaramaMTE+ is a set of Eclipse IDE plug-ins that we developed
using the Marama meta-tool development framework [12]. A
Marama tool includes a shared data model, multiple diagram
editors, and a set of event handlers providing constraint handling
and code generation support. The high level architecture of
MaramaMTE+ is illustrated in Figure 7. A set of editors support
diagrammatic modelling (1). Two key diagram types are used – the
form chart model and the architecture model (2). Diagrammatic
editors are instantiated to edit these models using the Eclipse
Graphical Editing Framework.
We used the WebSphinx crawler tool [18] to extract target web
application structure. WebSphinx is designed as an independent
Eclipse plug-in and MaramaMTE+ starts up WebSphinx through a
“WebSphinx coordinator” component (3). This component also
coordinates with a “DatabaseProcessor” component to collect
crawled target web application structural information and store it in
the crawler database (4). The “DatabaseProcessor” component in
“MaramaModelGenerator” accepts all crawled data from
WebSphinx and saves it in the crawler database (4). The database
processor manages database connections, retrieves website data and
transforms it into data suitable for initial form chart extraction by
the “DiagramGenerationManager” component.
MaramaMTE+ manages a custom web crawler result database
which is designed to provide website information for the synthesis
of MaramaMTE+ form chart models. The database can hold data
for multiple target websites and tool users can version the database.
The crawler database consists of tables “http_request”, “page”,
“parameter”, “path”, “port”, “server”, and “target system”. Table
“target system” contains data from target websites (such as
PetStore) that have been explored by the web crawler. Tables
“server” and “port” respectively record the server and port a target
website is running, for example, we run PetStore website on port
8000 of the “localhost” server. Table “path” is a “convenient table
that records a website’s main http request paths by combining
tables “port”, “server”, and “target_system”. Table “parameter”
records parameter and value for each http request path. Table
“page” gives every main web page a sensible name and table “http
request” is another “convenient table” that records fully-formatted
http requests by joining tables “page”, “parameter”, and “path”.
The “DiagramGenerationManager” component is the key element
of the “MarmaModelGenerator” subsystem. This retrieves website
information from the web crawler database (5) and communicates

with the MaramaModel to generate form chart model entities,
associations and their visual icons. The “Algorithm” component
arranges the generated visual icons and connectors into a basic
form chart diagram layout. We currently use a simple layout
algorithm to arrange the pages and actions one after another as
illustrated previously. We have also experitmented with force-
directed layout algorithms as provided by the CCVisu 3rd party
package [3]. “DiagramGenerationManager” then instantiates the
synthesized form chart diagram using MaramaEditor ready for
performance engineer augmentation.

Figure 7. High-level architecture of MaramaMTE+

MaramaMTE+ uses Eclipse Java Emitter Templates (JET) scripts
to generate form chart-based test plans and scripts and server-side
implementations from the form chart and architecture
MaramaModel components. JET uses a subset of the Java Server
Pages (JSP) syntax making it easy to write the required code
generation templates with embedded Java code extracting values
from MaramaModel components. MaramaMTE+ traverses the
form chart model and transforms each element into a set of target
load testing tool abstractions. For example, in Figure 8 we see a
JET template generating a root JMeter test plan from the client
form chart component and its properties. This includes the name of
the test plan, host(s) for tests, threads per test host, etc. JMeter
initialisation components and scripting are also generated e.g. to set
up and initialise timing monitors (WhileController). The first page
in the form chart model is then transformed into an initial http
request on the target web application (IfController). This includes
the target url and any parameters and example values encoded in
the form chart model. Transitions to Actions in the form chart
model generate decision logic in the JMeter test script (through
JMeter’s RegexExtractor, UserParameters, etc), which implements
a state machine model of user behaviour. Probabilities may be
simple random, fixed times, or complex stochastic probability
models as specified by the form chart model (through JMeter’s
BeanShellTimer, Gaussian Random Timer, etc).

6. DISCUSSION
We have evaluated MaramaMTE+’s effectiveness for supporting
realistic client load test generation by using it to synthesize a formal
model of client loading for several web-based systems, including
the Java PetStore, a micro-payment system we have previously
analysed extensively [5], and our own Departmental web site. This
involved for each target system: (1) extracting a form chart from
the target system using MaramaMTE+ and WebSphynx; (2)
augmenting the form chart with stochastic

Client
-hosts
-threads
-test deployment
-…

Page
 -url
 -parameters

-delayKind
-delayMin/Max
d l S dD

Action
-http request
-…

1..*

1 1..*

<jmeterTestPlan version = … >
 <hashTree>
 <TestPlan guiclass=”testPlanGui” testClass=”TestPlan” …>
 ……
 <elementProp name=”server”>
 <stringProp name=”Argument.value”>localhost</…>
 …

 <WhileController ……>
 ……
 <IfControllertestname="If Controller_page_index"......>

 <HTTPSampler ……>
 <stringProp name="Argument.value">purchaseItem</stringProp>
 <stringProp name="Argument.name">action</stringProp>

 <RegexExtractor......>
 <UserParameters......>
 <BeanShellTimer......>

</jmeterTestPlan>

Client ->
TestPlan.jet

Page ->
TestPlan.jet

Action ->
TestPlan.jet

Figure 8. JMeter test plan generation from MaramaMTE+ form chart model.

System Work Efficiency Performance of Test Bed PetStore vs. that of Legacy PetStore
 Effort to manually

build test plan and
scripts and run

Effort to augment
extracted form chart

and run tests

Java PetStore 18 hours 3 hours

NetPay micro-
payment system

25 hours 3 hours

Computer Science
web site

15 hours 2.5 hours

Test Bed PetStore vs. Legacy PetStore

0

500

1000

1500

2000

2500

3000

3500

 in
de

x
 c

ar
t

 s
ign

in
 h

elp

 c
at
eg

or
y

 c
he

ck
ou

t

 c
re
at
en

ew
ac

co
un

t

 p
ro
du

ct

 p
ro
du

ctd
et
ail

s

visited web page

av
er

ag
e

re
sp

on
se

 ti
m

e

Average Time(legacy PetStore)

Average Time (test bed
PetStore)

Table 1. Empirical comparison results
probability information, informed by the requirements of the
system concerning expected user loading; (3) generating JMeter
client load tests from MaramaMTE+; (4) running these tests and
comparing results against hand-built JMeter system load tests.
Table 1 presents some initial empirical evaluation results. Work
Efficiency compares the manual effort to construct JMeter test
plans with the JMeter IDE tool for the legacy websites (PetStore,
NetPay, and our department website) with the effort needed to
augment an automatically extracted form chart and generate
comparable JMeter loading test plans. The load testing work was
undertaken by an experienced software engineer who knew each
system well. The manually created JMeter test plans were done
using the JMeter GUI editor rather than replay/capture tool. This
was because of the conditional logic and parameterised inputs for
several pages that had to be used in order to make the tests as
flexible as the MaramamMTE+ generated tests. An additional
one-off overhead of approximately 4 hours was incurred for the
engineer to become familiar with MaramaMTE+. Efficiency
gains of between 5-8 times were demonstrated. We are currently
undertaking a more extensive user evaluation to draw more
reliable results.
The right hand column shows another important result. We ran
the same PetStore testing plan on the generated MaramaMTE test
bed and the legacy PetStore to compare average response times.
Here we can see different response time values and distributions
in the two systems. This comparison of performance can be used
to guide the abstraction process from a legacy system to an
abstracted architecture design in Marama MTE. More
specifically, the comparison of performance can tell 1) if the
abstraction/refinement has influenced the performance
distribution; 2) if the performance differs between the low and
high level models and permit investigation as to which part of the
system has caused the difference. We are developing a

mechanism to support refining legacy web systems to Marama
MTE-styled architecture design, and will use such performance
comparisons to guide users in their abstractions and refinements.
Most current web performance engineering tools are designed for
evaluating the performance of existing web sites under stress
loading [6][21]. Most require considerable knowledge of the
system under test to formulate and build appropriate loading test
plans and scripts. Almost all current web performance
engineering tools have limited formal models to capture client
load modelling, usually limited to server request sequences and
decision logic on server responses. These require much effort to
build and maintain, especially for systems under change, large
systems or systems the performance engineer is unfamiliar with.
In contrast MaramaMTE+ allows a target web application to be
crawled and a high-level, formal client load model to be
extracted and developed quickly by the performance engineer.
As shown by preliminary results with MaramaMTE+ in Table 1,
effort is much lower for generating a client load model with it
than using JMeter’s GUI test plan designer directly.
MaramaMTE+ also supports early design phase exploratory
performance engineering of yet-to-be-built systems. This is done
by generating prototypical server-side components from a
MaramaMTE+ architectural model and running the generated
client load model against this rapid prototype web application
server. Unlike our previous work where a simple client load
model was used [4], MaramaMTE+ allows a richer client load
model to be used for the prototypical web server evaluation.
Unlike simulation-based modelling for such analysis [15], real
server code is generated and run, resulting in more accurate
estimation of eventual web application performance.
Key advantages to our new approach are its use of a formal
model for client load behaviour modelling; the ability to extract

model structure from a web application via web crawling; model-
based generation of 3rd party stress testing tool test plans and
scripts; and ability to run and compare web application
performance under numerous different loading models accurately
and efficiently. Unlike most web performance engineering tools,
MaramaMTE+ extracts most information needed for the client
load testing model from the web application directly. This greatly
reduces errors and time taken to develop the model used to
represent client behaviour. The stochastic form chart model we
use for this provides a formal model which can be reasoned about
in addition to its use to generate test plans and scripts. It allows
performance engineers to model client behaviour in terms of
probabilistic interactions and server responses, and we have
shown this to provide a reasonably accurate model of user
behaviour [8]. Engineers can even build different versions of
stochastic form charts for all or part of a web application to
compare and contrast performance under different client
behaviour models. Generating test plans and scripts for 3rd party
stress testing tools allows Marama MTE+ to leverage their
advanced features for load testing. For example, JMeter provides
sophisticated measurement, reporting, distributed test execution
and test scheduling support features that MaramaMTE+ is able to
reuse directly with little effort. However we must also live with
3rd party tool limitations. Most web application stress testing
tools have less rich client behavioural models than
MaramaMTE+ form charts. Thus we need to simplify the model
when test scripts are generated or extend the testing tool (if
possible). Sometimes implementing form chart-specified
behaviour is quite complex in the 3rd party testing tool. For
example, to implement a probabilistic state machine in JMeter
proved to be quite challenging. Use of 3rd party monitoring and
measurement tools can also be problematic as these may perturb
the results obtained. It is not always easy to control such tools in
the way we are able to when generating our own client load test
implementation.
The extracted form chart structure can be very large for large
web sites. We mitigate this issue in MaramaMTE+ by allowing
any number of partial form charts to be rendered in diagrams,
managing cognitive complexity of the models. Automatic layout
of the extracted form chart diagrams is currently rudimentary but
MaramaMTE+ allows the engineer to modify layout and diagram
elements. This supports tailoring of the form chart-based client
behavioural models by the engineer to best suit their cognitive
modelling of the target application’s client behaviour.
The use of 3rd party testing tools to carry out the stress testing
means we can leverage their advantages e.g. JMeter’s support for
data capture, presentation and distributed stress testing.
The fundamental issue at the heart of our approach is the
adequacy of the stochastic form chart model to capture “realistic”
client behaviour for web application stress testing.
MaramaMTE+’s stochastic form charts rely on the performance
engineer specifying probabilities of different client interactions
with web pages and example data parameters for invoked web
server pages. These are thus as sensitive to erroneous data as in
any other stress testing tool. Our experiments to date have shown
the client load modelling and performance results obtained from
generated JMeter test plans to compare favourably with observed
user behaviour. However, a client load test model is always
going to be a model, even if based on empirically measured or
benchmarked results. One mitigating approach we have adopted

for MaramaMTE+ is to allow multiple form chart models to be
defined for the same target web application. This allows the
performance engineer to experiment with a variety of different
client load mixes and compare web application performance
under these different conditions.
Augmenting extracted form charts with probabilistic information
about user behaviour can be a complex process for large web
sites. A key area of future work is to infer such stochastic form
chart parameters from observed target web application behaviour.
We plan to monitor the actual usage of web sites using tools
similar to those used for logging and fault analysis [21] to
provide real user session histories with large numbers of http
requests. We will then analyse these logs to infer transition
probabilities improving accuracy of the client behaviour model.
We will also use example data in these user session http requests
to provide realistic sequences of parameter values to invoke web
server pages. This will still allow performance engineers to
change these probabilities or to specify alternative versions of the
form chart for the same application to investigate impact of
differing client load models on the web application performance.
Targeting our test plan and script generation to other popular web
stress loading tools e.g. Microsoft’s Web Stress Testing tool [17]
is also desirable. Some applications may require tuning of
parameters better supported by stress loading tools other than
JMeter e.g. database and web server thread pools and memory
management. Combining our stress testing tools with server
management tools would also allow us to monitor other system
resource usage in addition to response time e.g. CPU, disk and
memory. Currently all testing is done by invoking the web server
from a “browser proxy”, with no rendering of returned data or
execution of client-side JavaScript. With the increasing use of
AJAX and similar client-side scripting technologies, plug-ins and
rich content client side code may impact greatly on client
request/response behaviour. We plan to experiment with
generating Selenium Remote Control unit tests which allow a
browser proxy to communicate with the target web application
server, and render/execute returned content/scripts.
We need to improve the automatic layout of synthesized form
charts along with support for visualising test performance
measures. In addition, support for semi-automatic grouping of
large web site structures into multiple form chart diagrams is
needed to manage large web site evaluation. Side-by-side
comparison of performance measures resulting from tests
generated from different form chart models for the same
application could be improved to show different performance
under different client behaviour models.
Ultimately we would like to support reverse-engineering of
architecture designs into MaramaMTE+, reverse engineering of
client behaviour models, and forward engineering of parts of the
system with alternative architectural and client behaviour
models. This would allow an engineer to reverse engineer an
existing web application structure and behaviour model; modify
parts of these models; and then generate not only new client load
tests but prototypical new server components and stress-test these
rapid prototypes. This would provide a performance engineering
environment allowing exploratory analysis of the performance
effects of web application architecture changes.

7. SUMMARY
In this paper, we presented MaramaMTE+, which uses an
innovative approach to automate the process of retrieving
website structural data from a web user’s perspective and using it
to generate a form chart model and load testing plans. We
demonstrated the effectiveness of the approach through a case
study, where a running PetStore site was crawled, structural data
extracted, a form chart model automatically generated and
manually augmented, JMeter testing plans generated and
executed, and load testing results collected. Future directions for
MaramaMTE+’s development were also described, including
combining the generated form chart with a generated design level
model of a legacy system which will make it possible for
ordinary tool users to make rigorous comparisons between
different products (e.g. Java PetStore and .NET PetShop).

8. ACKNOWLEDGMENTS
Parts of this research were supported by a grant from the New
Zealand Foundation for Research, Science and Technology
Research for Industry programme. The authors would like to
thank Christof Lutteroth for discussions around Form Chart
reverse engineering approaches.

9. REFERENCES
[1] Apache JMeter: http://jakarta.apache.org/jmeter/index.html
[2] Barford, P. and Crovella, M. Generating representative Web

workloads for network and server performance evaluation,
Proc 1998 ACM SIGMETRICS Joint Intnl Conference on
Measurement and Modeling of Computer Systems,
Madison, Wisconsin, 1998, pp. 151-160.

[3] Beyer, D. CCVisu - A Tool for General Force-Directed
Graph Layout and Co-Change Visualization, See
http://directory.fsf.org/ccvisu.html

[4] Cai, Y., Grundy, J.C. and Hosking, J.G. Experiences
Integrating and Scaling a Performance Test Bed Generator
with an Open Source CASE Tool, In Proc 2004 IEEE Intnl
Conference on Automated Software Engineering, Linz,
Austria, September 20-24, IEEE CS Press, pp. 36-45.

[5] Dai, X., Grundy, J. and Lo, B.: Comparing and contrasting
micro-payment models for Ecommerce systems,
International Conferences of Info-tech and Info-net (ICII),
China (2001).

[6] Denaro, G., Polini, A., Emmerich, W. Early performance
testing of distributed software applications, In Proceedings
of the 4th Intnl Workshop on Software and Performance, Jan
14-18 2004, Redwood City, California, pp. 94-103.

[7] Draheim, D. and Weber, G., Modeling Submit/Response
Style Systems with Form Charts and Dialogue Constraints,
LNCS Volume 2889/2003, Springer.

[8] Draheim, D., Grundy, J.C., Hosking, J.G., Lutteroth, C. and
Weber, G. Realistic Load Testing of Web Applications, In
Proc 10th European Conference on Software Maintenance
and Re-engineering, Berlin, 22-24 March 2006.

[9] Elbaum, S., Karre, S., Rothermel, G. Improving Web

Application Testing with User Session Data, In Proceedings
of the 2003 International Conference on Software
Engineering, IEEE CS Press, 2003.

[10] Foy, C. Fitnesse Selenium Wrapper, Saturday, September
16, 2006, http://www.cornetdesign.com/2006/09/fitnesse-
selenium-wrapper.html

[11] Grundy, J.C., Hosking, J.G., Li, L. And Liu, N. Performance
engineering of service compositions, ICSE 2006 Workshop
on Service-oriented Software Engineering, Shanghai, May
2006.

[12] Grundy, J.C., Hosking, J.G., Zhu, N. and Liu, N. Generating
Domain-Specific Visual Language Editors from High-level
Tool Specifications, In Proceedings of the 2006 IEEE/ACM
International Conference on Automated Software
Engineering, Tokyo, 24-28 Sept 2006, IEEE CS Press.

[13] Hellsten, C., Automate acceptance tests with Selenium, IBM
Developerworks, 20 Dec 2005, See: http://www-
128.ibm.com/developerworks/web/library/wa-selenium-
ajax/#N100A2

[14] Java.net, Java Pet Store 2.0 Reference Application,
https://blueprints.dev.java.net/petstore/

[15] Liu, Y., Fekete, A., Gorton, I., Design-Level Performance
Prediction of Component-Based Applications, IEEE Trans
Software Eng, vol. 31, no.11, pp. 928-941, November, 2005.

[16] Mehra, A., Grundy, J.C. and Hosking, J.G. A generic
approach to supporting diagram differencing and merging
for collaborative design, In Proceedings of the 2005
ACM/IEEE Automated Software Engineering, Long Beach,
CA, Nov 7-11 2005, IEEE Press, pp. 204-213.

[17] Microsoft Download Center, Web Application Stress Tool,
See:http://www.microsoft.com/downloads/details.aspx?familyid
=e2c0585a-062a-439ea67d75a89aa36495&displaylang=en

[18] Miller, R.C. and Bharat, K. SPHINX: A Framework for
Creating Personal, Site-Specific Web Crawlers. In
Proceedings of WWW7, Brisbane Australia, April 1998,
See: http://www.cs.cmu.edu/~rcm/websphinx/

[19] Menasce, D.A., Load testing of web sites, IEEE Internet
Computing, Jul/Aug 2002, vol. 6, no. 4, pp. 70-74.

[20] Smith, C.U., Lladó, C.M., Cortellessa, V., Di Marco, A.,
Williams, L.G. From UML models to software performance
results: an SPE process based on XML interchange formats,
In Proceedings of the Fifth International Workshop on
Software and Performance, Palma, Spain, July 12-14, 2005,
ACM Press, pp. 87-98.

[21] Sprenkle, S., Gibson, E., Sampath, S., Pollock, L.
Automated Replay and Failure Detection in Web
Applications, In Proceedings of the 2005 International
Conference on Automated Software Engineering, Long
Beach, California, November 7-11, IEEE CS Press, 2005.

[22] Subraya, B.M., Subrahmanya, S.V., Object Driven
Performance Testing in Web Applications, In Proceedings
of the 1st Asia-Pacific Conference on Quality Software
(APAQS'00), IEEE CS Press, 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

